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1 Weak, Strong Duality Theorem

1.1 Duality Form

Definition 1.1 (Symmetric Duality Form)

Primal Dual

min cTx max λT b

s.t. Ax ≥ b, x ≥ 0 s.t. λTA ≤ cT , λ ≥ 0

(1)

Definition 1.2 (Asymmetric Duality Form)

Primal Dual

min cTx max λT b

s.t. Ax = b, x ≥ 0 s.t. λTA ≤ cT

(2)

Proof [Asymmetric is a special case of Symmetric]

Primal Dual

min cTx max λT
1 b− λT

2 b = (λT
1 − λT

2 )b

s.t. Ax ≥ b (λ1), x ≥ 0 s.t. λT
1 A− λT

2 A = (λT
1 − λT

2 )A ≤ cT

−Ax ≥ −b (λ2) λ1 ≥ 0, λ2 ≥ 0

(3)

Just let λ = (λT
1 − λT

2 ) then we prove it. ■

Note on Table of Duality Transformation

Dual(Max) Primal(Min)

ith const ≤ ith var ≥ 0
ith const = ith var unrestricted
jth var ≥ jth const ≥ 0

jth var unrestricted jth const = 0



1 Weak, Strong Duality Theorem

Definition 1.3 (Duality gap)
The gap between primal objective and dual objective.

Remark[LP’s Duality gap] Duality gap for LP is zero.

Example 1.1Bounded variable LP’s Dual

Primal Primal 2 Dual Dual 2

min cTx min cTx1 − cTx2 max lT y1 − uT y2 max lT y1 − uT y2

s.t. l ≤ x ≤ u s.t. x1 − x2 ≥ l s.t. y1 − y2 ≤ c s.t. y1 − y2 = c

− (x1 − x2) ≥ −u − (y1 − y2) ≤ −c

x1, x2 ≥ 0 y1, y2 ≥ 0 y1, y2 ≥ 0

Example 1.2Primal’s variant to Dual Consider the primal LP, suppose primal and dual are

feasible, let λ be a known optimal solution to the dual.

Minimize cTx

Subject to Ax ≥ b, A : m× n

x ≥ 0.

1. If the kth equation of the primal is multiplied by µ ̸= 0, an optimal solution w to the dual

of this new problem should be: On the basis of µakλk = akwk and µckλk = ckwk, we

have wk = λk
µ , wi ̸=k = λi.

2. If we add µ times the kth equation to the rth equation, an optimal solution w to the dual

of this new problem should be: On the basis of bkλk + brλr = bkwk + (µbk + br)wr and

akλk + arλr = akwk + (µak + ar)wr, we have wk = λk − µλr, wi ̸=k = λi.

3. If we add µ times the kth equation to c, an optimal solution w to the dual of this new

problem should be: Supposew is the same as λ except kth element, based on
∑m

i=1 a
iwi =∑m

i=1 a
iλi + akwk − akλk ≤ (cT + µak), recalling that

∑m
i=1 a

iλi ≤ cT and if ak(wk −
λk) = µak, then w is feasible too. Here wk = λk + µ,wi ̸=k = λi. And notice that

wT b =
∑m

i=1,i ̸=k λi + (λk + µ)bk = (cT + µak)x0, thus w is optimal too.

Primal Dual

min (cT + µak)x max wT b

s.t. Ax = b, x ≥ 0 s.t. wTA ≤ (cT + µak)

(4)

4. If the RHS changes from b to b′, the resulting program is infeasible or has a finite optimal

feasible solution. Since the dual feasibility does not change, and the dual problem is still

feasible, so the primal problem should be infeasible or finite optimal.

Primal Dual

min cTx max wT b′

s.t. Ax = b′, x ≥ 0 s.t. wTA ≤ cT , λ ≥ 0

(5)
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1 Weak, Strong Duality Theorem

1.2 Clark’s Theorem

Lemma 1.1 (Clark’s Theorem)
Given the following primal and dual LPs, if one of them is feasible, then the feasible region

for one of them is non-empty and unbounded.

Primal Dual

min cTx max λT b

s.t. Ax ≥ b, x ≥ 0 s.t. λTA ≤ cT , λ ≥ 0

(6)

Remark It’s important to note that the result of the theorem is that the feasible region of one of

the LPs is unbounded, but it may not be the case that the LP has unbounded objective function

value with the given objective function.

Proof There are three possibilities to consider.

1. The primal is infeasible and the dual is unbounded. Done!

2. The dual is infeasible and the primal is unbounded. Done!

3. Both the primal and the dual are finite optimal.

Suppose both the primal and the dual are finite optimal, let ĉ = [−1,−1, . . . ,−1] and consider

the following systems:

1. ∃ŷ such that AT ŷ ≤ ĉ, ŷ ≥ 0

2. ∃x̂ such that Ax̂ ≥ 0, ĉT x̂ < 0, x̂ ≥ 0

Farkas’ lemma tells us exact one of them holds.

1. If (2) holds, then x̂ is a feasible solution to primal LP and suppose x is also feasible to

primal LP too, note that x̂ ̸= 0 because ĉT x̂ < 0, for any λ > 0, we have another feasible

x+ λx̂ for primal too. By enlarge λ, we have a unbounded feasible region for primal LP.

A(x+ λx̂) = Ax+ λAx̂ ≥ b+ λ ∗ 0 = b

2. If (1) holds, then ŷ is a feasible solution to dual LP (ŷ is not 0 since AT ŷ ≤ ĉ), and suppose

y is also feasible to dual LP too. Similarly, we have y + λŷ is feasible to dual LP for any

λ > 0.

■

1.3 Weak Duality Theorem

Theorem 1.1 (Weak Duality Theorem)
Letx andλ be the feasible solutions to the Primal and Dual respectively. ThenλT b ≤ cTx.

Proof By the feasible conditions Ax ≥ b and λTA ≤ cT , we have λ⊤b ⩽ λ⊤Ax ⩽ c⊤x. ■

Note on In the case of LP, the dual gap is always zero, while this is not true in other optimization

problem. Weak duality theorem points out the lower bound of the primary problem, λ⊤b ⩽

λ⊤Ax ⩽ c⊤x as long as we can find a λ such that λTA ≤ cT .
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1 Weak, Strong Duality Theorem

Corollary 1.1 (Equal Primal-Dual Feasible means Optimal)
If x0 and λ0 are feasible to the Primal and Dual respectively and if λT

0 b = cTx0, then x0

and λ0 are optimal to their respective problems.

Proof Assume that x0 and λ0 are not optimal, we can find that cTx0 = λT
0 b < λT

1 b, and this

contradicts the Weak Duality Theorem. ■

1.4 Strong Duality Theorem

Theorem 1.2 (Strong Duality Theorem for LP)
If either the Primal or the Dual has a finite optimal solution, so does the other; the

corresponding values of the objective are equal. If either problem has an unbounded

objective, the other problem has no feasible solution.

Corollary 1.2 (Optimal Primal to Optimal Dual)
Let the Primal problem have an optimal basic feasible solution corresponding to the basis

B. Then the vector λ satisfying λT = cTBB
−1 is an optimal solution to the Dual. The

optimal solutions to both program are equal.

Proof If we partition A as A = (B|D), and assume the optimal basis is B, then xB = B−1b,

and the optimal value is CB
⊤B−1b. The reduced cost vector is rT = (rB|rD)T , and rD

⊤ =

CD
⊤ − CB

⊤B−1D ⩾ 0, r⊤B = C⊤B − C⊤BB−1B = 0. Thus C⊤BB−1D ⩽ CDT
⊤, this means

that λT is a feasible solution for Dual. And λ⊤b = C⊤BB−1b = CT
BxB , by weak duality theorem

we know it is optimal. ■

Note on Farkas lemma can be used to prove strong duality theorem and can also be proved by

strong duality theorem (Ali Ahmadi, 2016, Lec. 5).

Proof [Strong Duality to Farkas Lemma] Easy to see both condition can not holds simultaneously,

then we prove if not (1) then (2).

Primal Dual

min 0 max λT b

s.t. Ax = b, x ≥ 0 s.t. λTA ≤ 0

(7)

Here we prove if primal is infeasible then dual is unbounded. Easy to see dual must be feasible

(λ = 0), then dual is unbounded, which means there exists λ such that λTA ≤ 0, λT b > 0. ■
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1 Weak, Strong Duality Theorem

1.5 Dual solution from primal simplex table

Below is an example of how to obtain the dual solution directly from the final simplex

tableau of the primal.

Primal Dual

min − x1 − 4x2 − 3x3 max 4λ1 + 6λ2

s.t. 2x1 + 2x2 + x3 ≤ 4 s.t. 2λ1 + λ2 ⩽ −1

x1 + 2x2 + 2x3 ⩽ 6 2λ1 + 2λ2 ⩽ −4

x1, x2, x3 ⩾ 0 λ1 + 2λ2 ⩽ −3 λ1, λ2 ⩽ 0

(8)

3
2 1 0 1 −1

2 1 λ1

−1 0 1 −1 1 2 λ2

2 0 0 1 1 10

Here the 1st and 2nd row correspond to λ1 and λ2, the 4th and 5th column are slack variables, the

2nd and 3rd column are basic variables. By rT = C⊤D−C⊤BB−1D, we know that for s1, we have

0−(λ1, λ2)

 1

0

 = 1⇒ λ1 = −1, and for s2 we have 0−(λ1, λ2)

 0

1

 = 1⇒ λ2 = −1.

1.6 Homogenous form of Dual

Theorem 1.3

Primal Dual HD PD

finite optimal →← finite optimal

unbounded →↚ infeasible

infeasible ←↛ unbounded

infeasible → unbounded → infeasible

finite optimal → finite optimal

(9)

We can construct the homogenous form of dual problem as follows.

Primal Dual HD HD’s Dual

min cTx max λT b max λT b min 0

s.t. Ax ≥ b s.t. λTA ≤ cT s.t. λTA ≤ 0 s.t. Ax ≥ b

x ≥ 0 λ ≥ 0 λ ≥ 0 x ≥ 0

(10)

Homogenous form has a nice property: it must be feasible, e.g. λ = 0. Note that PD and

P has the same feasible region, thus they have the same feasibility.
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1 Weak, Strong Duality Theorem

Lemma 1.2 (Unbounded condition)
Suppose the following LP problem is feasible:

Minimize cTx

Subject to Ax ≥ b, A : m× n

x ≥ 0.

The optimal solution approaches to −∞ if and only if there exists an x̄ ̸= 0 such that

x ≥ 0,Ax ≥ 0, cTx < 0.

Proof
Primal Dual HP’s Dual HP

min cTx max λT b max 0 min cTx

s.t. Ax ≥ b s.t. λTA ≤ cT s.t. λTA ≤ cT s.t. Ax ≥ 0

x ≥ 0 λ ≥ 0 λ ≥ 0 x ≥ 0

(11)

If side: since x̄ is a feasible solution to (HP), thus (HP) is feasible (unbounded or finite). Assume

(HP) is finite optimal, so thus (HP’s Dual), and cT x̄ < 0 contradicts the weak duality theorem,

thus the assumption is wrong, (HP) is unbounded and (HP’s Dual) is infeasible. (HP’s Dual) and

(Dual) share the same feasible region, then (Dual) is infeasible too. Since (Primal) is feasible,

then it must be unbounded.

If side (2): Suppose there is a feasible solution x∗, then x∗ + λx̄ is also feasible (λ ≥ 0),

and we can increase λ to infinity and the optimal value is negative infinity.

Only if side: (Primal)’s unbounded means (Dual) is infeasible and also (HP’s Dual), and

(HP) must be feasible (0 is a feasible solution), thus (HP) is unbounded too. It means we can

find a solution, which is feasible (x̄ ≥ 0, Ax̄ ≥ 0) and cT x̄ < 0 (unbounded and min objective

function). ■

1.7 Complementary Slackness

Theorem 1.4 (Complementary Slackness– Asymmetric Form)
Let x and λ be feasible solutions for the primal and dual programs, respectively. A

necessary and sufficient condition that they both be optimal solutions is that for all i

xi > 0⇒ yTai = ci

xi = 0⇐ yTaj < cj

Proof Note that in both side we have (yTA− cT )x = 0. ■

Theorem 1.5 (Complementary Slackness– Symmetric Form)
Let x and λ be feasible solutions for the primal and dual programs, respectively. A

necessary and sufficient condition that they both be optimal solutions is that for all i and

j (where aj is the jth row of A)
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1 Weak, Strong Duality Theorem

xi > 0⇒ yTai = ci

xi = 0⇐ yTai < ci

λj > 0⇒ ajx = bj

λj = 0⇐ ajx > bj

Lemma 1.3 (Primal-Dual Feasible + Complementary Slackness = Optimal)
Given a primal-feasible solution x and a dual-feasible solution y, x and y are optimal iff

the complementary slackness conditions hold.

Example 1.3 Consider the following LP (P. Williamson, 2014, PS. 1), assume that vi, si are

positive and v1
s1
≥ v2

s2
≥ · · · ≥ vn

sn
, let k be the largest index such that s1 + s2 + · · ·+ sk−1 ≤ B.

Find a optimal solution to primal and dual.

Primal Dual

max

n∑
i=1

vixi min

n∑
i=1

yi +By0

s.t.
n∑

i=1

sixi ≤ B s.t. [s IT ](y0, ..., yn)
T ≥ v

xi ≤ 1 i = 1, . . . , n yi ≥ 0 i = 0, ..., n

xi ≥ 0 i = 1, . . . , n

(12)

Solution The logic is that the first k − 1 variable contribute most value to objective, thus they

must be the maximum value, that is, 1. And the kth variable can achieve maximum smaller than

1 due to the first constraint. By complementary slackness we know the dual variable behind kth

must be 0, and solve the following equations we derive the dual solution.

xi =


1 i < k

B−(s1+s2+···+sk−1)
0 i = k

0 i > k

yi =


vk
sk

i = 0

si

(
vi
si
− vk

sk

)
0 < i < k

0 i ≥ k

1.8 Degeneracy and Uniqueness under Duality

1. Since λ is m-dimensional, dual degeneracy implies more than m reduced costs that are

zero.

1. If dual has a nondegenerate optimal solution, the primal problem has a unique optimal

solution. However, it is possible that dual has a degenerate solution and the dual has a

unique optimal solution.
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2 Dual Simplex Method

1.9 Redundant Equations (Luenberger and Ye, 2015, Ch. 4)

Definition 1.4 (Reduandant equations)
Corresponding to the system Ax = b, x ≥ 0, we say the system has redundant equations

if there is a nonzero λ satisfying λTA = 0, λT b = 0.

Remark This means that one of the equations can be expressed as a linear combination of the

others.

Definition 1.5 (Null variable)
Corresponding to the system Ax = b, x ≥ 0, a variable xi is said to be a null variable if

xi = 0 in every solution.

Example 1.4
2x1 + 3x2 + 4x3 + 4x4 = 6

x1 + x2 + 2x3 + x4 = 3

x1 ⩾ 0, x2 ⩾ 0, x3 ⩾ 0, x4 ⩾ 0

Twice the second row minus the first row leads to x2 +2x4 = 0. Thus, both of two variables are

null variable.

Lemma 1.4 (Null value theorem)
If S is not empty, the variable xi is a null variable in the system Ax = b, x ≥ 0 iff there is

a nonzero vector λ such that λTA ≥ 0, λT b = 0 and the ith component of λTA is strictly

positive.

Definition 1.6 (Nonextremal variable)
A variable xi in the system Ax = b, x ≥ 0 is nonextremal if the inequality xi ≥ 0 is

redundant.

Lemma 1.5 (Nonextremal variable theorem)
If S is not empty, the variable xj is a nonextremal variable for the system Ax = b, x ≥ 0

iff there is λ ∈ Em and d ∈ En such that

λTA = dT dj = −1, di ⩾ 0 for i ̸= j

and such that

λTb = −β for some β ≥ 0

Lemma 1.6 (Inconsistent systems of linear inequalities (Bertsimas et al., 1997, P. 194))
Let a1, ..., am be some vectors in Rn, with m > n + 1. Suppose that the system of

inequalities a′ix ≥ bi, i = 1, . . . ,m, does not have any solutions. Show that we can

choose n + 1 of these inequalities, so that the resulting system of inequalities has no

solutions.
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2 Dual Simplex Method

2 Dual Simplex Method

3 Shadow Price and Sensitivity Analysis

Definition 3.1 (Shadow Price)
The shadow price to a constraint i is the rate of the change in the objective function value

as a result of a change in the value of bi.

Definition 3.2 (Simplex Multiplier)
λT = cTBB

−1

3.1 Introducing a new variable

Minimize cTx+ cn+1xn+1

Subject to Ax+ an+1xn+1 = b

x ≥ 0, xn+1 ≥ 0

1. The feasibility of the solution is not affected (the feasibility region is enlarged), but the

solution may not be optimal. We now have more choices to form the basis.

2. Firstly, check if cn+1 − CT
BB
−1an+1 ≥ 0 still holds. If so, the former optimal solution is

still optimal, else xn+1 should enter the basis and we need to find the leave variable.

3.2 Introducing a new constraint

Lemma 3.1 (Introducing a new constraint)
Consider the LP in standard form, assume x0 is an optimal solution to the problem.

Introducing a new constraint aTx ≤ φ.

Minimize cTx

subject to Ax = b,x ≥ 0

1. Prove that if aTx ≤ φ, then x0 is optimal for the new problem too.

2. Prove that if aTx > φ, then either there exists no feasible solution to the original

problem or there exists an optimal solution x∗ such that aTx∗ = φ.

Proof
P1 D1 P2 D2

min cTx max λT b min cTx max λT b− λm+1φ

s.t. Ax = b s.t. λTA ≤ cT s.t. Ax = b, aTx ≤ φ s.t. λTA− λm+1a ≤ cT

x ≥ 0 x ≥ 0 λm+1 ≥ 0

(13)

9



3 Shadow Price and Sensitivity Analysis

If aTx ≤ φ, assume λ0 is the optimal solution to (D1), then cTx0 = (λ0)T b. We can

construct a solution (λ0, λm+1 = 0) to (D2). Note that (λ0, λm+1 = 0) is feasible to (D2) and

cTx0 = (λ0)T b− 0 · φ, thus x0 is still the optimal solution to (P2).

P3 D3

min 0 max λT b− λm+1φ

s.t. Ax = b, aTx ≤ φ s.t. λTA− λm+1a ≤ 0

x ≥ 0 λm+1 ≥ 0

(14)

If aTx > φ, since 0 is a feasible solution to (D3), thus (D3) is feasible.

1. If (D3) is unbounded, then (P3) is infeasible. Since (P2) and (P3) share the same feasible

region, thus (P2) is infeasible too.

2. If (D3) is finite optimal, so thus (P3) and (P2). Assume that for all optimal solution

x∗, aTx∗ < φ, and also we have λm+1 = 0 according to the complementary slackness

property. That is, (D2) and (D1) share the same feasible region and achieves the same

optimal solution, (D2) can be rewritten as (D1). Thus (D2)’s dual problem should share

the same optimal solution as (P1) too, and all optimal solution for (P1) should satisfy

aTx ≤ φ, and this contradicts our assumption. Therefore, there exists an optimal solution

x∗ for (P2), where aTx∗ = φ.

3. If (D3) is finite optimal, so thus (P3) and (P2). Assume that for all optimal solution

x∗, aTx∗ < φ, and also we have λ∗m+1 = 0 according to the complementary slackness

property. Denote the optimal solution set for (P1), (D1), (P2), (D2) as X1, Y1, X2, Y2, then

for any x1 ∈ X1, λ1 ∈ Y1, x2 ∈ X2, λ2 ∈ Y2, c⊤x2 =
((

λ1
)⊤)

b =
(
λ2

)⊤
b = c⊤x′.

This means X2 ∈ X1. To prove this, assume there is x2 ∈ X2 and x2 /∈ X1, but x2 is

feasible to (P1) and cTx2 = cTx1, contradiction. Note that the optimal solution set must

be convex, and it means the hyperplane aTx = φ splits the set X1, and X2 is the part of

X1 located in the negative half space of aTx = φ. Thus X2 ∩
{
x|a⊤x = φ

}
is not empty,

there exists an optimal solution x∗ such that aTx∗ = φ.

■

Minimize cTx

Subject to Ax = b

an+1x = bn+1

x ≥ 0

1. The current solution is also optimal if it satisfies the augmented constraint. Introducing a

new constraint is actually introducing a new hyperplane and reduce the feasibility region.

2. Otherwise, ...
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3 Shadow Price and Sensitivity Analysis

3.3 Change Cost coefficient for a non-basic variable

Minimize
∑n

i=1,i ̸=j cixi + (cj +∆)xj

Subject to Ax = b

x ≥ 0

1. The feasibility B−1b does not change too.

2. Note that the simplex multipliers CBB
−1 are not affected, thus the next thing is to check

the reduced cost whether rj(∆) = cj +∆− λTaj = ∆+ rj ≥ 0. If so, then the optimal

remains, otherwise, this non-basic variable should enter the basis.

3.4 Change Cost coefficient for a basic variable

Consider a change in the cost coefficient ci of a basic variable xi to ci +∆:

1. The feasibility holds.

2. The basic cost vector changes from cB to cB(∆) = cB +∆ei.

3. The updated simplex multipliers are λT (∆) = (cB(∆))T B−1 = λT +∆eTi B
−1.

4. The reduced cost coefficient for a non-basic variable xj is rj(∆) = cj − λT (∆)aj =

rj−∆eTi B
−1aj = rj−∆yij . Thus the range of ∆ for which the current solution remains

optimal is given by maxyij<0
rj
yij
≤ ∆ ≤ minyij>0

rj
yij

.

3.5 Changing RHS scalar

Consider a change in a RHS scalar bi to bi +∆:

1. The simplex multipliers are unaffected and the optimality condition holds.

2. If the feasibility holds, then it is still optimal. If the feasibility does not hold, then apply

the Dual Simplex Method.

3. Note that xB(∆) = B−1 (b+∆ei) = xB +∆B−1ei, thus it may not be feasible.

4. The range of∆ for which the current solution remains optimal is given bymaxβki>0
−xBk
βki
≤

∆ ≤ minβki<0
−xBk
βki

, where βki is the kith element of B−1.

5. If the current solution remains optimal, the objective function value changes to z∗(∆) =

z∗ +∆λi, where λi is the ith element in the vector of simplex multipliers.

3.6 Changing a non-basic column

Consider a change in a coefficient akj in a non-basic column vector aj , k = 1, 2...,m; j =

m+ 1, ..., n to akj +∆, that is, aj(∆) = aj +∆ek.

1. The feasibility of the solution and simplex multipliers remain unaffected.

2. The reduced cost coefficient of xj is rj(∆) = cj −λTaj(∆) = rj −∆λT ek = rj −∆λk.

3. The range of ∆ for which the current solution remains optimal is ∆λk ≤ rj . If λk = 0,

then the optimality is not affected by row k.
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4 Lagrange Duality

3.7 Changing a basic column

Consider a change in a coefficient aki in a basic column vector ai, k = 1, 2...,m; j =

m+ 1, ..., n to akj +∆.

1. The feasibility of the solution and simplex multipliers remain unaffected.

2. The updated basis is B(∆) = B + ∆eke
T
i = B

(
I +∆B−1eke

T
i

)
, and B−1(∆) =(

I − φB−1eke
T
i

)
B−1, where φ =

[
βik +∆−1

]−1.
3. The updated solution is xB(∆) = xB − φx∗iB

−1
·k , and the condition for primal feasibility

is max{q∈B|x∗
i βqk<0}

x∗
q

x∗
i βqk
≤ φ ≤ min{q∈B|x∗

i βqk>0}
x∗
q

x∗
i βqk

.

4. The simplex multipliers is λ(∆) = λ − φλke
T
i B
−1, and the reduced cost is rN (∆) =

rN − φλi

(
B−1N

)
k
. And the condition for dual feasibility is max{j∈N |λiakj<0}

rj
λiakj

≤
φ ≤ min{j∈N |λiakj>0}

rj
λiakj

.

4 Lagrange Duality

Lagrange dual problem is always a convex optimization problem regarding the dual variable,

i.e., minx
(
f(x)− λ⊤g(x)

)
is concave regarding λ. On the basis of weak duality theorem, we

can derive the lower bound of the primal problem.

Primal Dual

min f(x) max
λ≥0

(min
x

f(x)− λT g(x))

s.t. gi(x) ≥ 0, x ≥ 0 where g(x) = (g1(x), ..., gn(x))
T

(15)

Note on Sign of Lagrange multiplier Be careful to the sign of Lagrange multiplier, since

g(x) ≥ 0 and λ ≥ 0, and we want to minimize the objective function. According to the logic

of penalty method, the objective function should minus λg(x) to ensure that g(x) ≥ 0 holds

when we minimize the objective function. Thus, if g(x) ≤ 0, the Lagrange function should be

f(x) + λg(x).

Definition 4.1 (Lagrangian function for standard LP)
Suppose the original problem is the following, call this problem (P ),

minimize f(x) subject to h(x) = b, x ∈ X L(x, λ) = f(x) + λT (h(x)− b)

then the Lagrangian of (P ) is defined as

L(x, λ) = f(x)− λT (h(x)− b)

for λ ∈ Rm. λ is known as the Lagrange multiplier.

Remark Note that the sign of λ does not change our result because of the equality constraint.
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5 KKT condition

Theorem 4.1 (Lagrangian sufficiency)
Let x∗ ∈ X and λ∗ ∈ Rm be such that

L (x∗, λ∗) = inf
x∈X

L (x, λ∗) and h (x∗) = b

Then x∗ is optimal for (P ).

Proof ■

5 KKT condition
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